Non-Restoring Integer Square Root: A Case Study in Design by Principled Optimization

نویسندگان

  • John W. O'Leary
  • Miriam Leeser
  • Jason Hickey
  • Mark Aagaard
چکیده

Theorem proving techniques are particularly well suited for reasoning about arithmetic above the bit level and for relating di erent levels of abstraction. In this paper we show how a non-restoring integer square root algorithm can be transformed to a very e cient hardware implementation. The top level is a Standard ML function that operates on unbounded integers. The bottom level is a structural description of the hardware consisting of an adder/subtracter, simple combinational logic and some registers. Looking at the hardware, it is not at all obvious what function the circuit implements. At the top level, we prove that the algorithm correctly implements the square root function. We then show a series of optimizing transformations that re ne the top level algorithm into the hardware implementation. Each transformation can be veri ed, and in places the transformations are motivated by knowledge about the operands that we can guarantee through veri cation. By decomposing the veri cation e ort into these transformations, we can show that the hardware design implements a square root. We have implemented the algorithm in hardware both as an Altera programmable device and in full-custom CMOS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Integer Square Root

Square root plays a major role in applications like computer graphics, image processing. To increase the performance of computation, many algorithms have been proposed to carry out the computation task in hardware instead of software. One very common and relatively quick method for finding the square root of a number is the Newton-Raphson method which requires extensive use of division to produ...

متن کامل

Optimization of Mixed-Integer Non-Linear Electricity Generation Expansion Planning Problem Based on Newly Improved Gravitational Search Algorithm

Electricity demand is forecasted to double in 2035, and it is vital to address the economicsof electrical energy generation for planning purposes. This study aims to examine the applicability ofGravitational Search Algorithm (GSA) and the newly improved GSA (IGSA) for optimization of themixed-integer non-linear electricity generation expansion planning (GEP) problem. The performanceindex of GEP...

متن کامل

Design of an Elastic Arthroplastic Disc Optimized under Different Loads

Introduction: Due to limitations of current treatments for degenerative disc disease, arthroplastic methods to repair the diseased disc have been proposed. The artificial disc is a mobile implant for degenerative disc replacement that attempts to lessen the degeneration of the adjacent elements following interbody fusion procedures. Because the success of artificial disc replacement depends on ...

متن کامل

T-count and Qubit Optimized Quantum Circuit Design of the Non-Restoring Square Root Algorithm

Quantum circuits for basic mathematical functions such as the square root are required to implement scientific computing algorithms on quantum computers. Quantum circuits that are based on Clifford+T gates can be made fault tolerant in nature but the T gate is very costly to implement. As a result. reducing T-count has become an important optimization goal. Further, quantum circuits with many q...

متن کامل

A 32-Bit Signed/Unsigned Fixed Point Non-Restoring Square-Root Operation Using VHDL

After analyzing the advantages and disadvantages of all the general algorithms adopted in designing square root on FPGA chips with pipeline technology, a proposed algorithm based on digit by digit calculation method is discussed. The algorithm is realized on the ModelSim SE 6.3f development platform with VHDL language and the simulation results show that it is characterized by occupying less re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994